
Surfer: An Extensible Pull-Based Framework for
Resource Selection and Ranking

Paul Z. Kolano
NASA Advanced Supercomputing Division, NASA Ames Research Center

M / S 258-6, Moffett Field, CA 94035 U.S.A.

E-mail: kolanoBnas - nasa I gov

Abstract

Grid computing aims to connect large numbers of ge-
ographically and organizationally distributed resources to
increase computational power; resource utilization, and re-
source accessibility. In order to effectively utilize grids,
users need to be connected to the best available resources
at any given time. As grids are in constantflwr, users cannot
be expected to keep up with the configuration and status of
the grid, thus they must be provided with automutic resource
brokering for selecting and ranking resources meeting con-
straints and preferences they specifi. This paper presents a
new OGSI-compliant resource selection and ranking franre-
work called Surfer that has been implemented as part of
NASA’s Information Power Grid (IPG) project. Surfer is
highly extensible and may be integrated into any grid en-
vironment by adding infomtion pmviders knowledgeable
about that environment.

1. Introduction

Grid computing [4] aims to connect large numbers of ge-
ographically and organizationally distributed resources to
increase computational power, resource utilization, and re-
source accessibility. In order to effectively utilize grids,
users need to be connected to the best available resources
at any given time. In small, single organization grids, users
may be able to adequately select resources for simple re-
quests on their own. Even small grids, however, are in
constant flux with resource availability changing minute by
minute due to user activity and system failures. Large,
multi-organization grids are much more chaotic where re-
source types, connectivity, support levels, software environ-
ment, availability, etc. may vary greatly with a greater prob-
ability of resource failures. In such an environment, users
cannot possibly keep up with the configuration and status of
the grid nor potentially even which resources they may have

access to, thus they will tend to choose only those resources
they are directly familiar with. This leads to imbalanced re-
source utilization, which results in longer wait times and a
decrease in productivity. To maximize the benefits of grid
computing, users must be provided with automatic resource
brokering for selecting and ranking resources meeting con-
straints and preferences they specify.

Although resource brokering is a fundamental service
that is vital to the usability of every grid environment, it is
difficult to provide a general purpose solution for all such
environments since each one has its own idiosyncrasies
such as job models, resource types, and sources of infor-
mation. Typical resource brokers are tightly entangled with
these idiosyncrasies, eliminating the possibility of reuse
across the grid community. By removing any dependence
on such idiosyncrasies, and specifically, decoupling the ac-
cess to resource information from its utilization in the re-
source selection process, it becomes possible to provide a
general framework upon which resource brokers for any en-
vironment can be built. The key features required in such a
framework include an expressive and extensible constraint
language, easy integration of new resource types and infor-
mation sources, and accommodating preexisting informa-
tion retrieval optimizations.

This paper presents Surfer, the Selection and Ranking
Framework for Extracting Resources. The job of Surfer is
to surf the pool of potential grid resources and extract the
highest ranked resources meeting user specified constraints
and preferences. Surfer has no built-in bias towards any
job model or selection policy, thus is suitable for inclusion
in any grid environment by adding information providers
knowledgeable about that environment. These providers de-
termine the types of resources that are selectable and sup-
ply functions constrainable in resource requests. Provider
functions are allowed to have arbitrary argument and re-
turn types or may be macros to be expanded before pro-
cessing. Function definitions may hide arbitrarily complex
back-end information retrieval that may be optimized as de-

l

sired. Surfer has been implemented as an OGSI-compliant
grid service that can also be invoked directly through its
Java APIs.

Surfer is part of NASA’s Information Power Grid (IPG)
project [7]. The goal of the IPG is to develop new tech-
nologies to facilitate the use of the grid and enable scien-
tific discovery. Several prototype services have been imple-
mented including an execution service for submitting and
managing jobs, a prediction service [181 for estimating ex-
ecution, wait, and transfer times, the Cardea [lo] service
for dynamic resource access control, the Naturalization Ser-
vice [8] for automatically establishing the execution envi-
ronment for user applications, and the Surrer framework,
which is the subject of this paper.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the selection and ranking
framework. Section 4 describes a prototype resource bro-
ker implemented for the IPG using this framework. Finally,
section 5 presents conclusions and futiie work.

2. Related Work

ies. Requests are specified as a set of constraints, which are
solved as a constraint satisfaction problem.

All of the matchmaking models suffer from the same
limitation. Namely, they rely on a push-based model of in-
formation, where every possible attribute of interest must be
computed a priori and stored within a classad to be utilized
during selection. Many attributes critical to resource selec-
tion, however, are too dynamic or complex to precompute
andor too large to store temporarily. Examples include ac-
cess control, which may be completely dynamic based on
a resource’s current state and the user’s grid identity as in
[101 and network bandwidth, which may include measure-
ments between a fuiiy connected network of thousands 01
resources. In general, a more flexible pull-based model is
needed to utilize such information, which can be computed
on demand to control size and complexity.

A variety of resource brokers are available with their
respective grid environments/scheduling systems. Exam-
p!es kc!ude resource brckers f ~ r Legion [2], Europem Data
Grid [9], ALICE Environment [171, UNICORE [131, Fraun-
hofer Resource Grid [6], NimrodG [I], and GridLab [14].
In general, these brokers were designed for their specific
grid environment, thus are not easily extensible, nor are eas-
ily incorporated into other environments. In cases,
they are dependent on a specific job model or job submis-
sion functionality. In other cases, they are dependent on
specific information that may not be available else-
where. Finally, many of them have built-in selection poli-

The most well known resource selection framework is
the Condor matchmaker 1151. In this framework, providers
and consumers describe their properties and requirements as
classified advertisements (classads), which are pushed to a
central matchmaker that does the matching. Each classad is

ally contain a constraint, which describes the requirements
that must be met by any matching classads, and a ranking

l

a mapping between and that may addition- cies such as a specific load-balancing scheme that may be
and/or undesirable in other environments.

- - - -
function, which describes the order of preference when sev-
eral classads satisfy the constraint.

The original matchmaking framework only allows a re-
quest to be matched with a single classad, but has been ex-
tended in several ways to overcome this limitation. In [121,
a request may be matched to a set of classads of the same
type, where requests may contain aggregate requirements
that all classads of the set must satisfy. The aggregation
functions include min, max, and sum. In [161, classads have
been extended by allowing them to contain multiple ports,
each of which may be matched with other classads of spe-
cific types and characteristics. Thus, a single request may
be matched with multiple heterogeneous classads.

For matchmaking schemes to work, all parties must uti-
lize the same vocabulary of attribute names and values. To
facilitate interoperability between disparate vocabularies,
[191 extends matchmaking with ontologies, which allows
conditions to be defined under which differing attribute val-
ues may still be matched (e.g. “Linux” and “FreeBSD’
match “Unix”). This approach, however, does not yet sup-
port multi-classad matching. RedLine [113 incorporates all
three classad extensions by allowing heterogeneous classad
sets, aggregate set requirements, and ontological vocabular-

2

3. Surfer Framework

Surfer is a framework for the selection and ranlung of
resources, where a resource is considered to be any entity
that may require selecting such as computers, storage sys-
tems, software, data, etc. Figure 1 shows the architecture
of Surfer, which is described in greater detail in section 3.5.
Processing begins when a user or client application makes
a resource selection request. The request is rewritten from
a boolean expression to a set expression utilizing function
calls and queries to providers that supply information. The
rewritten request is then evaluated into an actual set of re-
source sets, which is finally ranked and returned to the user.
The following sections describe this process in detail.

3.1. Requests

A Surfer request consists of a set of individual resource
requests, a global constraint, a global ranking function, and
a number of resource sets to return. Each individual re-
quest consists of an identifier, a resource type, a local con-
straint, and a local ranking function. The global constraint

Figure 1. Surfer architecture

describes the requirements that must be met by the complete
set of resources while each local constraint describes the re-
quirements that must be met by any resources selected for
that particular resource request. Similarly, the global rank-
ing function describes how complete resource sets should
be ordered while each local ranking function describes how
individual resources should be ordered.

Figure 2 shows an example request for a storage resource
with more than 20 GB of free disk space and a compute
resource running -64 with at least 128 free CPUs and
more than 10 GB of free physical memory, where the host
name of each must be the same. The most preferable stor-
age resources have the most free disk space while the most
preferable compute resources have the most free CPUs. The
final set of resource pairs must be ordered by the sum of the
local ranking functions after the compute resource’s rank
has been scaled by a factor of 100. Note that this figure is
only a text representation of a request object and does not
depict a specific syntax for making requests with the excep-
tion of the constraints and the ranking functions.

Global:
Constraint:

Ranking:
k1.h-t = $sl.host

loo * $cl.lanking +
$sl.ranking

Resource:
I d sl
Type: StorageResoura
Constraint:

frem > 2oooo
Ranking:

frem

Resource:
I d cl
Type: ComputeResource
constraint

freecpus 2 128
& freePhysicalMemoryMb > “lW
& operatingsystem = ‘IRE64

Ranking:
frdpUS

Figure 2. Resource Broker request

The global/local distinction for constraints is purely for
notational convenience and natural encapsulation as local
constraints are conjoined to the global constraint. Resource
ranking, however, is always performed with respect to the
global ranking function. Local ranking functions may only
reference attributes of the associated resource and are used
to prune resource sets during evaluation as described in sec-
tion 3.4. If no global ranking function is defined, it is as-
sumed to be the product of the local ranking functions.

Constraints and ranking functions are written in typed
first-order logic without quantification, which consists of
constants, variables, functions, and boolean, arithmetic,
and relational operators. The constants include numbers,
strings, and the boolean values true and false. The variables
consist of the set of resource identifiers given in the individ-
ual requests and are used to reference resource attributes.
In figure 2, the variables are “cl” and “sl”, which are used
in the global constraint to reference the host name of the
compute aiid stmage resciurce, respecfive:y.

Supported operators include standard boolean, arith-
metic, and relational operators as well as “contains” and
“!contains” for collection types such as sets and lists and
the inline conditional operator ?: a la C and Java. All of
the arithmetic, relational, and set operators are extensible
based on the Number, Comparable, and Collection classes
of Java, respectively. That is, any operands conforming
to these interfaces may be used. For the relational opera-
tors, if only one operand conforms to the Comparable inter-
face, but its associated type has a constructor based on the
other operand type, an appropriate instance will be created
to make the two operands comparable to each other. This
is especially useful for handling different unit types. For
example, in figure 2, the “freePhysicalMemoryMb” func-
tion returns a Comparable-conforming type “MemorySize”,
which has both Number and String constructors allowing
memory sizes such as “1W to be easily normalized and
compared to purely numeric values.

The key element of the specification language is the
set of functions available, which varies depending on the
providers that have been incorporated into the system.
Surfer has no built-in functions. Every function available
is defined by a provider that has access to the information
that function supplies. Figure 2 shows some of the functions
available in the example resource broker discussed in sec-
tion 4, which was developed using the Surfer framework. In
the figure, “freecpus”, “freePhy sicalMemoryMb”, “operat-
ingsystem”, “freeMb”, “host”, and “ranking” are all func-
tions supplied by a specific provider.

While Surfer requests are similar to the gangmatch clas-
sad requests of [16], its pull-based model of information
allows its language to be sigdicantly more expressive. In-
formation that is too large, complex, or dynamic to be pre-
computed and pushed to a central matchmaker, can be easily

3

utilized by calling an appropriate provider function.
The result of a Surfer request is a tuple set, which is a set

of tuples such that each tuple is a map from variable names
(i.e. resource ids) to resources that has been optimized for
space and intersection performance. Figure 7 shows three
example tuple sets. Each column shows a different variable
value. For example, S2 has three tuples with variables VI
and v2 where (vl, v2) takes the values (a, a), (b, a), and
(b, b). The tuple set resulting from a request contains the
specified number of tuples and is ordered by value of the
global ranking function from highest to lowest. Each tuple
contains a resource selection for each resource id requested
and satisfies the conjunction of all specified constraints.

3.2. Providers

The core of the resource brokering framework are the
providers that supply functions that may be constrained and
queries that may be executed to produce resources with ap-
propriate attribute values. Functions can be defined to take
objects of any number and class type as arguments and to
return objects of any class type. This allows significant flex-
ibility and arbitrary extensions to the constraint and rank-
ing language. Functions may also be macros, which are
processed during rewriting and transform strings to strings.
Macros provide an easy abstraction mechanism for hiding
complexity and grouping commonly used expressions.

Queries take a set of variable names and a boolean ex-
pression utilizing those variables and return a tuple set of
resources satisfying the expression. Providers are not re-
quired to support queries, but query providers must support
functions as the set of functions supplied by a provider de-
fines the functions that are constrainable within the boolean
expression of queries to that provider.

The set of resource types that can be requested by the
user is defined by the queries of the available providers.
That is, any resource can be requested for which there ex-
ists a query in some provider. Resources are considered to
be objects with a set of identifying attributes that are unique
to each resource (e.g. host and directory for a storage re-
source) and a set of dynamic attributes that may vary over
time (e.g. free disk space). Figure 3 shows the Java inter-
face that every resource must implement. The getAttributes
method must return the map from attribute names to values.
The isMergeable method takes a resource and must return
whether that resource has the same identifying attributes as
the current resource. Finally, the mergeAttributes method
takes a resource and merges its attributes into the current
resource’s attributes. This method is used to merge the at-
tributes of resources with the same identifying attributes
that may have been produced by different providers during
evaluation. A BaseResource class provides default imple-
mentations for getAttributes and mergeAttributes.

public interface Resource (
public Map getAttributes();
public boolean isMergeable(Res0urce res);
public boolean mergeAttributes(Res0urce res);

1

Figure 3. Resource interface

Figure 4 shows the Java interface that every provider
must implement, which consists of two methods for func-
tions and two for queries. The getFunctions method must

hasQuery method takes a list of resource types and must re-
turn a boolean indicating whether that type of query is sup-
ported. The callFunction methods takes a function name
and an array of arguments and must produce an actual value
based on these arguments. The runQuery method takes a set
of variable names and a boolean expression utilizing those
variables and must return the resources satisfying that ex-
pression. Section 3.5 describes how new providers are in-
corporated into the framework.

ieiiiiii the set of f ~ ~ t i o i i s tki: ~L,c pic.vridGr ~i;i;!ies. The

public interface Provider (
public Set getFunctions();
public boolean hasQuery(List types);

public Object callFunction(String name, Object[] args);
public List callFunctions(List names, List a r g h y s) ;

public TupleSet runQuery(Set vas, AST ast);
public List runQueries(List varSets, List ask);

one of {
oneof {

1

Figure 4. Provider interface

For some providers, it may be possible to increase over-
all throughput by processing function calls and queries
in batches. This is especially likely in cases where the
provider uses other services on different hosts to implement
its back-end fcnctionality. To avoid limiting any potential
provider optimizations, providers can implement alternative
batch interfaces for callFunction and runquery. A Base-
Provider class provides implementations of each in terms
of the other, thus whichever is not provided will be based
on the one that is. An additional optimization available to
providers is to cache the dynamic attributes of any resources
returned in a query. When this is done, functions based on
those attributes can be called with minimal cost.

3.3. Rewriting

In order to produce an appropriate tuple set from a
boolean constraint, that constraint must lirst be rewritten
into an expression using the functions and queries that the

4

I

providers supply. Four set operations are utilized to de-
scribe these expressions: intersections, unions, queries, and
reductions. Intersections and unions are defined as normal
but with special handling for tuple sets. A query takes a
provider id, a set of variables, and a boolean expression in
those variables and returns a tuple set such that each tuple
has a resource mapping for every variable that together sat-
isfy the boolean expression. A reduction takes a tuple set
and a boolean expression and returns the subset of the given
set that satisfies the boolean expression. In general, a query
is more efficient than a reduction as each element in a re-
duction set may necessitate a call to multiple providers.

Kewriring begins with a rquesL'a Lunjokid ~cjiia'uaiiii,
where conjunctions are changed to intersections, disjunc-
tions to unions, and negations are distributed along the way.
True constants are changed to universal sets (Le. the set rep-
resenting all possible resource combinations) and false con-
stants to empty sets. Any macros are expanded by calling
h e apprcpriak p r o v i h fmctio~. Rel~ti.t;,ons =e changed
to queries if all functions within the relation belong to the
same provider and that provider supports queries in the req-
uisite number and types of variables. All other relations are
changed to reductions on the universal set, with each func-
tion transformed into an explicit call to an explicit provider.

Although the expression generated from this initial trans-
formation could be evaluated as is, several optimizations are
possible. In particular, it is desirable to (1) eliminate univer-
sal sets as they are expensive to compute, (2) minimize the
number of queries to run by combining queries to the same
provider, and (3) minimize the number of function calls by
minimizing the size of each reducbon set.

To achieve these goals, the unification axioms shown in
figure 5 are applied to the initial set expression. Lower num-
bered axioms are applied before higher numbered axioms.
Axiom 1 actually consists of four separate axioms, the most
important of which is the second, which will eliminate a
universal set when it is intersected with anything else. Ax-
ioms 2 and 3 are used to combine queries when possible.
Axioms 4 and 5 are used to minimize reduction set size.
Although axiom 5 can always be applied in place of axiom
4, it is undesirable to choose the order in which the reduc-
tions occur at this point since the number of elements in
each set is unknown until they are actually evaluated. Fi-
nally, axiom 6 is used both to eliminate universal sets and
to minimize reduction set size by pushing intersections into
unions to maximize the impact of the other axioms. The
end result of rewriting will be an expression of the form

Figure 6 shows the conjoined constraint of figure 2 after
rewriting to reduced set form. All of the macros have been
expanded from an easily readable form to the specific names
used by one of the providers. Note that "freeCpus" has been
expanded to the value representing 100 times the number of

-

ui reduce,(n, wY, A~ w.

1.

2.

3.

4.

5.

6.

Figure 5. Unification axioms

free CPUs in the last minute divided by 100. This is an ex-
ample of how complex details can be hidden from the user
by supplying appropriate macros. All universal sets have
been eliminated, queries have been combined as much as
possible, and the one reduction set has been minimized by
bringing all other terms inside. Note that the two remaining
queries cannot be combined even though their providers are
the same because that particular provider does not support
queries of multiple types at once.

reduce(que-ry(pid2, { s 1) , Ssl .Mds-Fs-hMB > 1oooO)
n query@id2, (c l) ,

% c l . M d s _ C p u - T o t l ~ l ~ I 100 2 128
& $cl.Mds-Memory-h-To6l-freeMB > "1OG"
& $~cl.Mds_Os-name = "IRMW),

call(pid2, Mds-Host-hn, [%I]) = call(pid2, Mds-Host-hn, [$sl]))

Figure 6. Rewritten constraint

3.4. Evaluation

After a request has been rewritten into reduced set form,
it must be evaluated to produce an actual tuple set, which
must then be ordered according to the global ranking func-
tion. This involves utilizing the functions and queries sup-
plied by the providers and computing the results of set,
arithmetic, and relational operations. Although the rewriter
has performed expression-level optimizations, it is the re-
sponsibility of the solver to optimize the actual evaluation
of rewritten form. The main goals of optimization are to
(1) utilize available provider optimizations, (2) run identi-
cal queries only once, and (3) control set expansion.

To take advantage of any available provider optimiza-
tions, function calls and queries are always grouped into
batches and sent to the batch interfaces of callFunction and
runQuery in the providers. Identical queries may result
from the application of axiom 5 in figure 5. To reduce
the negative impact of this axiom, queries are gathered, run
once, and the results duplicated where necessary.

Since Surfer allows an arbitrary number of resources to

5

be selected at once, the number of tuples that can be gen-
erated during evaluation is exponential in the number of
resources requested as each position within the tuple can
potentially take any resource value of the appropriate type.
Thus, the most critical optimization of the solver is to con-
trol this complexity to the greatest extent possible. This
exponential expansion occurs during intersections between
tuple sets with disjoint variable spaces as each tuple in one
set may generate a new tuple for each tuple of the other set.
Unions do not have this problem as the new set size is guar-
anteed to be at most the sum of the sizes of the two sets.

Although the final size of an intersection involving mul-
tiple sets is fixed, the sizes ofthe intermediate sets may vary
with the order in which the individual intersections are eval-
uated. The intermediate sizes affect the total number of tu-
ples that must be compared, thus directly affect execution
time. Figure 7 shows three tuple sets and the number of tu-
ple intersections required for each evaluation order. As can
be seen, even for small sets, the niiinbei of tuple iiiieisec-
tions is significantly impacted by the evaluation order.

n order I n's 1
I (~ i n s 2) n ~ 3 I 7 I

Figure 7. Intersection order

Surfer optimizes intersection evaluation order in two
ways. The basic assumption of these optimizations is that
sets will share variables that help reduce the resulting set
size. When intersections occur outside of a reduction, the
evaluation order is selected according to estimated set size.
For two sets S1 and $2, let the set of variables shared be-
tween tuples of S1 and S2 be denoted by V and the maxi-
mum number of resources possible for each vi in V be de-
noted by CT~. The estimated set size of S1 n S 2 is then de-
fined as IS11 . IS2l/ n!:\ 0;. That is, for each tuple of S1,
the number of tuples of S2 that can be expected to match
that tuple and be added to the resulting set decreases by a
factor of ai for each variable shared. Thus, sets that are
very sparse will be intersected before denser sets and sets
with more shared variables will be intersected before those
with less. For simplicity, the implementation uses the same
a, for all resource types, which may be configured as de-
scribed in section 3.5.

When intersections occur within reductions, a different
strategy is used. After rewriting, all reductions will be in the
form reduce(n9=1 Sj, t k) . This form can be rewrit-

6

ten to reduce(reduce(n:=, Si, t l) n nj=s+l Sj, /\Ez2 tk)
when no variable of term tl is a variable of any set Sj . Thus,
any intermediate result can be reduced by an individual term
as long as that result contains all of the sets relevant to that
term. In this case, the evaluation order is chosen based on
terms. Terms are chosen in ascending number of variables
and by involved estimated set size when the number of vari-
ables is the same. The idea is that the fewer variables a term
involves, the fewer sets will have to be intersected before
they can be reduced. After a term is chosen, intersections
are performed as in the non-reduction case.

Figure 8 shows the time required to generate differ-
ent numbers of resource tupies by intersection on a 750
MHz Pentium 3 system with 256 ME3 of memory running
FreeBSD. The curves show the three different methods by
which the given number of tuples were generated based on
an initial request for four resources with 120 possible val-
ues for each. In the queries only case, each of the four re-
SOiirce dimensions was redxed by the same facto: asing
a constraint on each resource variable (e.g. $sl.freeMb >
10000). In the reductions only case, relations between pairs
of variables were added to reduce the possible set size (e.g.
$sl.freeMb + $s2.freeMb > 10000). Finally, in the queries
and reductions case, both techniques were used.

lo: i 1 10' ld Total id Rewufce 10' Tuples 1 6 108 1

Figure 8. Intersection time vs. # tuples

Although the intersection times for even fairly large sets
are reasonable, once the final tuple set is generated, each
tuple must still be evaluated against the ranking function.
If the resulting set is very large and the ranking function
is complex, this evaluation may take significant time. To
guard against this possibility, Surfer provides a configurable
threshold that limits the maximum number of tuples that are
evaluated when intersecting two sets. When more than the
threshold tuple pairs are to be evaluated, a sampling func-
tion is generated that selects threshold pairs of tuples from
the two sets. Those tuples are intersected to produce the

a - .

resulting set, while the remaining tuples are discarded.
With a threshold limitation comes a loss of precision as

all possible resource combinations are no longer evaluated.
There is also no guarantee how many tuples the resulting
set will contain since providing such a guarantee could po-
tentially require every tuple pair to be evaluated. In an at-
tempt to keep the most desirable tuples, Surfer generates the
sampling function based on the product of the local rank-
ing functions associated with the resources of the tuple set.
Each tuple set is ranked individually according to this func-
tion and then the square root of the threshold number of the
highest ranked tuples of each set are intersected. If no 10-
cal ranking hietion is defined for a p d c d a i rzsGice, a
random sampling function is used.

Once the final tuple set has been produced, the last step
of evaluation is to order this set by the global ranking func-
tion. First, the solver's evaluation routines are used to com-
pute a rank for each tuple. The tuple set is then sorted based
OR these values. Finally, the requested number of the high-
est ranked tuples are returned to the user. Figure 9 shows the
total evaluation time of the queries only case of figure 8 for
different threshold values. As can be seen, the evaluation
time is relatively constant once the threshold is reached al-
lowing a maximum acceptable response time to be set based
on the threshold, if desired.

t to' rol id id td td id td td
T M . I R r u u c r T ~ ~ l w

Figure 9. Evaluation time vs. # tuples

3.5. Implementation

Surfer is implemented in Java as an Open Grid Ser-
vices Infrastructure (OGSI) compliant service within the
Open Grid Services Architecture (OGSA) framework [5] .
In the OGSA model, all grid functionality is provided by
named grid services that are created dynamically upon
request. The reference implementation of OGSI is the
Globus Toolkit [3], which provides grid security through

the Grid Security Infrastructure (GSI), low-level job man-
agement through the Globus Resource Allocation Manager
(GRAM), data transfer through the Grid File Transfer Pro-
tocol (G r i m) , and resourcdservice information through
the Monitoring and Discovery Service (MDS).

Figure 1 shows the architecture of the Surfer broker-
ing framework. In this figure, a client application uses the
Surfer client API to request a given number of resources
of specific types and characteristics. This request is con-
verted to XML and transmitted to an instance of the Surfer
service running within an OGSI container. The rewriter
component is then used to rewrite the request into a sin-
gle csnstiaiiit a id $03 there to %e r d i e d ssi fcai of
that constraint. This expression is then given to the solver
component, which evaluates the given set. Any calls and
queries are evaluated using the correlator component, which
provides a common interface for accessing all the provider
functionality. The solver also ranks the resource tuples
based on the ranking function given by the client applica-
tion. Finally, the resulting set is returned back to the client
and converted from XML form back to a tuple set of re-
sources meeting the specified characteristics.

Extending Surfer from a framework into a usable re-
source broker for a specific grid environment involves two
steps. First, a set of providers must be implemented that
conform to the Provider interface of section 3.2. These
providers should reflect the information available in the
given grid environment. The higher the quality of infor-
mation supplied within the functions of these providers,
the higher the quality of the selection results. Once the
provider implementations are ready, the second step is mod-
ifying Surfer's Web Service Definition Language (WSDL)
parameters. These parameters include the sampling thresh-
old, the expected size measure ni, and, most importantly,
the providers parameter, which supplies the fully qualified
class names of the provider implementations. The providers
parameter is used by the correlator component to load all the
available providers into the framework.

After configuration, Surfer is available as a usable re-
source broker. Users or client applications can request the
types of resources that are selectable, the functions that are
constrainable, or can make a request to return resources of
the appropriate types with specific characteristics.

4. IPG Resource Broker

An initial prototype of a resource broker for the NASA
P G has been developed using the Surfer framework. Even-
tually, this broker will have providers for most of the IPG
services under development and will allow constraints on
resource access based on Cardea, software locations, ver-
sions, and dependencies based on the Naturalization Ser-
vice, wait, execution, and transfer predictions based on

7

the Prediction Service, etc. For the initial prototype, two
providers were implemented: an MDS provider and an
MDS macro provider. The MDS provider supplies func-
tions and queries based on the fields available in the MDS
servers of the 'IPG. The MDS macro provider supplies
macros to abstract the sometimes cryptic names of MDS
into more human readable forms.

The h4DS provider supplies information about two types
of resources: compute resources and storage resources.
Compute resources consist of a host name, a queue name,
and a queue type while storage resources consist of a host
name and a directory name. Together, the two providers
suppiy 80 iunctions with 65 of them coming from the kiDS
provider and 15 from the MDS macro provider.

Figure 2 shows a request to the IPG Resource Bro-
ker. This request uses only functions from the MDS macro
provider, which are expanded to functions of the MDS
provider as shown in the rewritten request of figure 6. This
request exaiiiiiied 10,920 resouice combinations and ran in
15.7 seconds, the bulk of which was associated with query-
ing six separate MDS servers.

5. Conclusions and Future Work

This paper has described Surfer, the Selection and
Ranking Framework for Extracting Resources. Surfer al-
lows new information providers and resource types to be
easily integrated and allows arbitrary extensions to its con-
straint and ranking language through provider functions and
flexible evaluation of built-in arithmetic, relational, and set
operators. Its pull-based model allows information sources
too large and/or too complex for push-based models to be
efficiently integrated into the resource selection process. By
decomposing resource brokering into a framework indepen-
dent of any specific grid environment, Surfer simplifies re-
source broker development and can reduce duplication of
effort across the grid community.

There are a number of directions for future research.
Several efficiency and accuracy improvements are possible
in the evaluation routines of the solver. One inefficiency of
the current implementation is that common terms in reduc-
tions and ranking computations are recomputed for every
tuple. These routines will be rewritten in the near term to
compute such terms once, which should speed up evaluation
considerably. Another optimization is to allow providers to
give the cost of calling their functions, which may allow
term reductions to be evaluated in a more efficient order. Fi-
nally, the accuracy of estimated set size computations may
be improved by using different heuristics or by allowing the
expected size measure oi to be configurable for each re-
source type or be automatically derived during evaluation.

Another area requiring more study is handling conflicts
between providers such as different providers that supply

8

the same information about the same resources or supply the
same information, but about different subsets of resources.
The former case could potentially be handIed by allowing
providers to supply a freshness measure to their information
while an aggregate provider class may handle the latter.

Additional functionality may be added to the specifi-
cation language such as additional string operations like
startswith or endsWith. Other operators may be added as
necessary. Finally, The IPG resource broker will be greatly
enhanced in the near future. Namely, a variety of new infor-
mation providers will be integrated into the system as they
become available as part of the IPG project.

References

[11 Buyya, R., Abramson, D., Giddy, J.: NimrdG: An Architecture for a Re-
source Management and Scheduling System in a Global Computational Grid.
4th htl. Conf. on High Performance Computing, May 2M)o.

[2] Chapin, S.J., Katramatos, D., Kaqovich, J., Grimshaw, AS.: The Legion
Resource M a x g e x z Sys:e.?... 5t!! WksSp. cc Job Sche"hg Strategies for
Parallel Processing, Apr. 1999.

[3] Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit.
Intl. J. Supercomputer Applications. ll(2) (1997) 115-128.

[4] Foster, I., Kesselman, C. (eds.): The GRID: BluepMt for a New Computing
Infrastructure. Morgan-Kaufmann, San Francisco, CA (1999).

[5] Foster. I., Kesselman, C., Nick, J., Tuecke. S.: The physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
Open Grid Service lnfrashucture WG, Global Grid Forum, Jun. 2002.

[6] Hoheisel, A, Der, U.: An XML-based Framework for Loosely Coupled Ap-
plications on Grid Environments. 3rd Intl. Conf. on Computational Science,
Jun. 2003.

[7] Johnston, W.E., Gannon, D., Nitzberg, B.: Grids as Production Computing
Environments: The Engineering Aspects of NASA's Information Power Grid.
8th IEEE Intl. Symp. on High Performance Distributed Computing, Aug.
1999.

[8] Kolano, P.Z.: Facilitating the Portability of User Applications in Grid Envi-
ronments. 4th IFIF' Intl. Conf. on Distributed Applications and Interoperable
Systems, Nov. 2003.

[9] Lee, W., McGough, S . , Newhouse, S., Darlington, J.: Load-balancing EU-
DataGrid Resource Brokers. UK e-Science All Hands Meeting, Sep. 2003.

[101 Lepro, R.: Cardea: Providing Support for Dynamic Resource Access in a
Distributed Computing Environment. 19th Annual Computer Security Appli-
cations Conf., Dec. 2003.

111 Liu, C., Foster, I.: A Constraint Language Approach to Grid Resource Se-
lection. Technical Report TR-2003-07, Dept. of Computer Science, Univ. of
Chicago, Mar. 2003.

121 Liu, C., Yang, L., Foster, I., Angulo, D.: Design and Evaluation of a Resource
Selection Framework for Grid Applications. 11th EEE Intl. Symp. on High
Performance Distributed Computing, Jul. 2002.

131 MacLaren, J.: Resource Management and Resource Brokering Using UNI-
CORE. Global Grid Forum 7 Wkshp. on Grid Scheduling Architecture,
Mar. 2003. Availableat http: //www.gridsched.org/ggf7/GGF7-
T a l k 3 .ppt.

[141 Nabrzyski, J.: GridLab Resource Management System. Global Grid Forum
7 Wkshp. on Grid Scheduling Architecture. Mar. 2003. Available at ht tp:
//~~~.gridsched.org/ggf7/GGF7-Talk2.ppt.

[151 Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed Resource
Management for High Throughput Computing. 7th IEEE Intl. Symp. on High
Performance Distributed Computing, Jul. 1998.

[161 Raman, R., Livny, M., Solomon, M.: Policy Driven Heterogeneous Resource
Co-Allocation with Gangmatching. 12th IEEE Intl. Symp. on High Perfor-
mance Distributed Computing, Jun. 2003.

[171 Saiz, P., Buncic, P., Peters, A.J.: AliEn Resource Brokers. Cod. for Comput-
ing in High Energy and Nuclear Physics, Mar. 2003.

[181 Smith, W., Foster, I., Taylor, V.: Using Run-Time Predictions to Estimate
Queue Wait Times and Improve Scheduler Performance. 5th Wkshp. on Job
Scheduling Strategies for Parallel Processing. Apr. 1999.

[191 Tangmunmnkit, H., Decker, S., Kesselman. C.: Ontology-based Resource
Matching in the Grid - The Grid Meets the Semantic Web. 1st. Wkshp. on
Semantics in Peer-to-Peer and Grid Computing, May 2003.

